Periodische Funktion: allgemeine Konzepte

häufig bei der Untersuchung von natürlichen Phänomenen, chemischen und physikalischen Eigenschaften von verschiedenen Substanzen, wie auch in der Lösung von komplexen technischen Probleme mit dem Verfahren charakteristische Eigenschaft auftritt, ist die Frequenz, dann gibt es eine Tendenz, nach einer gewissen Zeit zu wiederholen.Eine Beschreibung und einer Grafik wie Zyklizität in der Wissenschaft gibt es eine spezielle Art von Funktion - eine periodische Funktion.

einfachste und klares Beispiel für alle - Behandlung unseres Planeten um die Sonne, in der die ganze Zeit Abstand zwischen ihnen unterliegt dem jährlichen Zyklus ändert.Ebenso kehrt er zu seinem Sitz, die eine volle Umdrehung, das Blatt der Turbine gemacht.Alle diese Prozesse können durch einen mathematischen Wert als eine periodische Funktion beschrieben.Im Großen und Ganzen ist unsere ganze Welt zyklisch.Und das bedeutet, dass eine periodische Funktion nimmt einen wichtigen Platz im System der menschlichen Ursprungs.

müssen für die Mathematik in der Zahlentheorie, Topologie, Differentialgleichungen und exakte geometrische Berechnungen führte zur Entstehung des neunzehnten Jahrhunderts, eine neue Kategorie von Funktionen mit ungewöhnlichen Eigenschaften.Sie waren periodischen Funktionen, die die gleichen Werte an bestimmten Stellen als Folge der komplexen Transformationen zu nehmen.Jetzt sind sie in vielen Bereichen der Mathematik und anderen Wissenschaften eingesetzt werden.Zum Beispiel bei der Untersuchung der Auswirkungen der verschiedenen Schwingungswellenphysik.

In verschiedenen mathematischen Lehrbüchern gibt verschiedene Definitionen einer periodischen Funktion.Ungeachtet dieser Unterschiede in der Formulierung, sie alle sind gleichwertig, da sie die gleiche Eigenschaft der Funktion zu beschreiben.Die einfachste und naheliegendste können folgende Definition.Funktionen, die die Beträge unterliegen nicht ändern, wenn wir ihr Argument hinzufügen, einen von Null verschiedenen Zahl, sind die sogenannte Periode der Funktion mit dem Buchstaben T bezeichnet periodische genannt.Was bedeutet das in der Praxis?

beispielsweise eine einfache Funktion der Form: wird y = f (x) zu einer periodischen, wenn X einen bestimmten Wert der Zeit (T) hat.Aus dieser Definition geht hervor, daß, wenn der numerische Wert der Funktion mit einer Periode (T) in einer der Punkte (x) definiert ist, dann wird es auch einen bekannten Wert bei x T + x - T. Der wichtige Punkt hier ist, dass, wennT Null-Funktion wird eine Identität.Eine periodische Funktion kann eine unendliche Anzahl von unterschiedlichen Perioden haben.In der Masse der Fälle auf die positiven Werte des T besteht zwischen dem niedrigsten numerischen Indikators.Man nennt sie die Grundperiode.Und all die anderen Werte von T ist es immer ein Vielfaches.Dies ist ein weiteres interessantes und für die verschiedenen Bereichen Immobilien sehr wichtig.

Schedule periodischen Funktion hat auch mehrere Funktionen.Zum Beispiel, wenn T die Grundperiode der Ausdruck: y = f (x), dann durch Auftragen dieser Funktion, gerade genug, um eine Niederlassung in einer der Perioden der Periodenlänge zu bauen, und bewegen Sie ihn dann entlang der x-Achse für die folgenden Werte: ± T, ± 2T, ± 3T und so weiter.Abschließend sei darauf hingewiesen, dass nicht alle von einer periodischen Funktion ist die Grundperiode ist.Ein klassisches Beispiel hierfür ist der deutsche Mathematiker Dirichlet Funktion der folgenden Form: y = d (x).