Hva er trekanten.

Det faktum at en slik trekant, firkant, kube, er geometri vitenskapen forteller oss.I dagens verden er det undervises i skolen uten unntak.Også vitenskapen som studerer direkte at en slik trekant, og hva hans eiendom er trigonometri.Den utforsker i detalj alle hendelser knyttet til disse geometriske figurer.Det faktum at en slik trekant, og vi skal snakke i dag i vår artikkel.Nedenfor beskrives typer, samt noen av de teoremer knyttet til dem.

Hva trekant?Bestemmelse

Det er en flat polygon.Den har tre vinkler, som det fremgår av navnet.Han har også tre sider og tre poeng, den første av dem - det strekker seg, den andre - poenget.Å vite hva som er de to vinkler, kan du finne den tredje, trekke summen av de to første fra antall 180.

Hva er trekanter?

De kan klassifiseres i henhold til ulike kriterier.

Først og fremst, de er delt inn akutt-vinklet, stumpe og rektangulære.Først må de skarpe hjørner, dvs. de som er mindre enn 90 grader.I et hjørne av den stumpe - sløv, det vil si en som er mer enn 90 grader, den andre to - skarpe.Det inkluderer også en akutt trekant og likesidet.Slike trekanter alle sider og vinkler like.Alle av dem er lik 60 grader, kan det lett bli beregnet ved å dividere summen av alle vinkler (180) av tre.

rettvinklet trekant

Det er umulig ikke å snakke om hva en rettvinklet trekant.

I et hjørne av figuren er 90 grader (rett linje), den har to av sine sider er anordnet vinkelrett.De resterende to hjørnene er skarpe.De kan være like, så er det en likebent trekant.Med en rettvinklet trekant er relatert Pythagoras 'læresetning.Bruk det du kan finne en tredjepart å vite de to første.Ifølge dette teoremet, hvis vi legger kvadratet av det ene benet til det andre plassen, kan du få en kvadratet av hypotenusen.Kvadratet av benet kan beregnes ved å trekke kvadratet av hypotenusen squared berømte ben.Snakker om hva trekanten, kan du huske om likebent.Dette er slik at to av sidene er like, og også lik to vinkler.

Hva er et ben og hypotenusen?

Catete - dette er en side av trekanten, som danner en vinkel på 90 grader.Hypotenusen - det er fortsatt et lag som er på motsatt side av rett vinkel.På grunn av sin etappe, kan du slippe en vinkelrett.Forholdet mellom den tilstøtende side til hypotenusen ble referert til som cosinus, og det motsatte - sinus.

egyptiske trekant - hva er dens egenskaper?

Det er rektangulær.Beina er lik tre og fire, og hypotenusen - fem.Hvis du så beina på denne trekanten er lik tre eller fire, kan du være sikker på at hypotenusen er lik fem.Også i henhold til dette prinsippet kan lett fastslå at benet vil være lik tre hvis andre er lik fire, og hypotenusen - fem.For å bevise dette utsagnet, kan du bruke Pythagoras 'læresetning.Hvis to like ben 3 og 4, 9 + 16 = 25, roten 25 - er 5, er at hypotenusen er lik 5. Også egyptisk kalt rektangulær trekant hvis sider er lik 6, 8 og 10;9, 12 og 15, og andre tall med forholdet 3: 4: 5.

Hva annet kan være en trekant?

trekanter kan også legges inn og beskrevet.Figuren rundt som beskriver en sirkel kalles innskrevet, alle hjørnene er de punktene som ligger på sirkelen.Beskrevet Triangle - en hvori den innskrevne sirkel.All sin side er i kontakt med det på enkelte punkter.

Hvordan er arealet av en trekant?

området enhver form måles i kvadratiske enheter (kvm. Meters kvm. Millimeter, sq. Centimeter kvadrat. Desimeter og t. D.) Denne verdien kan beregnes på ulike måter, avhengig av hvilken type av en trekant.Området uansett form med hjørnene kan bli funnet hvis du multipliserer det på siden vinkelrett falt på den fra motsatt vinkel, og dividere dette tallet med to.Også denne verdien kan finnes ved å multiplisere de to sidene.Deretter multiplisere dette tallet med sinus av vinkelen ligger mellom partene, og det vil bli delt i to.Å vite alle sidene i trekanten, men uten å vite hjørnene, området kan bli funnet på en annen måte.For å gjøre dette, finne omkretsen av halvparten.Så, én etter én ta unna rekke forskjellige retninger og formere mottatt fire verdier.Deretter finner kvadratroten av antall som kom ut.Arealet av innskrevet trekant kan finnes ved å multiplisere alle sider og dele det tallet med sirkelens radius beskrevet rundt ham, multiplisert med fire.

arealet av trekanten er beskrevet som følger: halve omkretsen multiplisert med radius av en sirkel som er skrevet inn i den.Hvis en likesidet trekant, kan sitt område finnes som følger: side kvadrering, multiplisere den resulterende tallet med kvadratroten av tre, deretter dele det tallet med fire.Tilsvarende kan man beregne høyden av en trekant hvor alle sidene er lik den til en av dem må multipliseres med en rot av tre, og så dividere dette antall av to.

teoremer knyttet til trekanten

grunnleggende teoremer som er knyttet til dette tallet er Pythagoras 'læresetning, som er beskrevet ovenfor, teoremet av sinus og cosinus.Den andre (sinus) er at hvis en hvilken som helst side dividert med sinus til vinkelen motsatt til det, er det mulig å oppnå en radius av en sirkel beskrevet omkring multiplisert med to.Den tredje (cosinus) er at dersom summen av kvadratene av de to sider av det samme produktet tatt bort, to og multiplisert med cosinus til vinkelen som ligger mellom dem, danner en kvadratisk tredje part.

Dali Triangle - hva er det?

Mange mennesker, møtt med dette konseptet, først trodde det var en slags definisjon i geometri, men det er ikke slik.Dali Triangle - er det vanlige navnet på tre steder som er nært forbundet med livet til den berømte kunstneren."Top" er det huset der Salvador Dali bodde i slottet, som han ga til sin kone, samt museet for surrealistiske malerier.Under en tur til disse stedene kan du lære mange interessante fakta om denne type skapende kunstner, kjent over hele verden.