Odštej ulomke z različnimi imenovalci.

Eden od najpomembnejših znanosti, katerega uporaba je mogoče videti v disciplinah, kot so kemija, fizika in celo biologije, je matematik.Študija te znanosti, ki nam omogoča, da razvijejo nekatere duševne lastnosti, izboljšanje abstraktno mišljenje in sposobnost koncentracije.Ena od tem, ki si zaslužijo posebno pozornost v okviru "matematiko" - seštevanje in odštevanje frakcij.Veliko študentov študij povzroča težave.Morda bo naš članek vam pomaga bolje razumeti to temo.

Kako odštejemo frakcije z imenovalcev enaka

frakcijami - to je enako število, s katerim lahko naredite različne stvari.Se razlikujejo od števil je v prisotnosti imenovalec.Zato je pri opravljanju poslov z frakcije morali raziskati nekatere značilnosti in pravil.Najenostavnejši primer je odštevanje frakcij z imenovalcev, ki so predstavljene v obliki isto številko.To dejanje ne bo težko, če veš, da preprosto pravilo:

  • odšteti ulomke od ene sekunde, kar potrebujete, da ne zmanjšuje števca ulomka odštejemo števca ulomka odbitne.Ta številka je napisana na števcu razliko in pustite isti imenovalec: K / m - b / m = (kb) / m.

Primeri odštevanje frakcij, katerih imenovalci so enaki

Poglejmo, kako izgleda na primer:

7/19 - 19/03 = (7 - 3) / 19 = 4/19.Od

brez zmanjšanja števca ulomka "7" odštejemo števca ulomka odbitnega "3", dobil "4".Ta številka beležimo odziv v števcu in imenovalcu garniture je enako število, ki je bilo v imenovalcev prve in druge frakcije - "19".

Spodnja slika prikazuje nekaj primerov.

Razmislite bolj zapleten primer, ki proizvaja odštejemo frakcij z istim imenovalcem:

29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 -, 3 - 8 - 2 - 7) / 47= 9/47.Od

brez zmanjšanja števca ulomka "29", tako da odštejemo števce vrti vse nadaljnje frakcije - "3", "8", "2", "7".Kot rezultat, smo dobili rezultat "9", ki je napisana v števcu odgovor in pisati v imenovalec je število, ki je v imenovalcev teh frakcij - "47".

Dodajanje frakcij z istim imenovalcem

seštevanje in odštevanje frakcij se izvaja na istem principu.

  • Za preklop ulomkov, katerih imenovalci so isti, morate sešteti števce.Prejela številka - vsota števec in imenovalec bo isti: k / m + b / m = (k + b) / m.

Poglejmo, kako izgleda na primer:

1/4 + 2/4 = 3/4.

števcu prvem mandatu frakcije - "1" - dodal del števec drugega izraza - "2".Rezultat - "3" - rekordno količino v števcu in imenovalcu rezerve je enak kot ga je v frakcijah - "4".

frakcije z različnimi imenovalci in odštevanje

ukrepa s frakcijami, ki imajo enak imenovalec, ki smo jih že šteje.Kot lahko vidite, vedoč preprosta pravila za reševanje podobnih primerov dokaj preprosto.Toda kaj, če boste potrebovali za izvedbo ukrepa, s frakcijami, ki imajo različne imenovalce?Mnogi dijaki prišli do težav s temi primeri.Ampak tukaj, če veš načelo rešitev, primerov ne bo več predstavljala težavo za vas.Tudi tu je pravilo, brez katerega je rešitev teh frakcij preprosto nemogoče.

  • Za opravljanje odštevanje frakcij z različnimi imenovalci, jih morate prinesti na isti najnižji skupni imenovalec.

izvedeti, kako to storiti, bomo govorili več.Frakcija

nepremičnino

Da bi dosegli nekatere frakcije na isti imenovalec, ki se uporabljajo pri reševanju glavno lastnost frakcij: ko bo delitev ali razmnoževanje števec in imenovalec z istim številom roll enaka tem.

Na primer, lahko frakcija je 2/3 imenovalec kot "6", "9", "12" in t. D., to se pravi lahko imajo obliko poljubno število, ki je mnogokratnik "3".Po števcu in imenovalcu, pomnoži z "2", boste dobili del 4/6.Po števcu in imenovalcu prvotne frakcije, pomnoži z "3", smo dobili 6/9, in če proizvajajo podoben učinek s številko "4", smo dobili 8/12.Ena je enakost lahko zapišemo kot:

2/3 = 4/6 = 6/9 = 8/12 ...

Kot rezultat več frakcij na isti imenovalec

razmisliti, kako bi nekaj frakcij na istiimenovalec.Na primer, da del prikazano na spodnji sliki.Najprej moramo ugotoviti, koliko lahko imenovalec za vse od njih.Da bi pomagali širiti razpoložljive imenovalca dejavnikov.

imenovalec ulomka 1/2 in 2/3 frakcij ni mogoče razčleniti na dejavnike.Imenovalec 7/9 multiplikator ima dve 7/9 = 7 / (3 x 3) imenovalec ulomka 5/6 = 5 / (2 x 3).Zdaj boste morali ugotoviti, kateri so dejavniki, da je najnižja vseh štirih frakcij.Kot v prvem frakcije v imenovalec ima številko "2", potem mora biti prisotna v vseh imenovalcev v frakciji 7/9 ima dva trojic, zato so tudi oba prisotna v imenovalec.Glede na zgoraj navedeno, ugotovimo, da je imenovalec sestavljena iz treh dejavnikov: 3, 2 in 3 je enaka 3 x 2 x 3 = 18.

Razmislite prvi roll - 1/2.Ima imenovalec "2", vendar nihče številka "3", in bi morala biti dva.Za imenovalec, pomnoži z dva trojic, ampak, glede na premoženje frakcije, števcu, in moramo pomnožite z dve trojic:
1/2 = (1 x 3 x 3) / (2 x 3 x 3) = 9/18.

proizvajajo podoben ukrep s preostalih frakcij.

  • 2/3 - imenovalec nima eno trojno in eno od dveh:
    2/3 = (2 x 3 x 2) / (3 x 3 x 2) = 12/18.
  • 7/9 ali 7 / (3 x 3) - v imenovalcu manjka dvojicah:
    7/9 = (7 x 2) / (9 x 2) = 14/18.
  • 5/6 ali 5 / (2 x 3) - v imenovalcu manjka trojic:
    5/6 = (5 x 3) / (6 x 3) = 15/18.

Vse skupaj izgleda takole:

Kako odštevanje in sešteti ulomke z različnimi imenovalci

Kot smo že omenili, da za izvedbo seštevanje in odštevanje frakcij z različnimi imenovalci, morajo privesti do skupnega imenovalca, in nato uporabitePravila odštevanje ulomkov z istim imenovalcem, ki je že povedal.

poglej primer: 4/18 - 3/15.

našli zmnožku 18 in 15:

  • Število 18 je sestavljen iz 3 x 2 x 3.
  • Število 15 je sestavljena iz 5 x 3.
  • Skupaj krat bo sestavljena iz naslednjih dejavnikov 5 x 3 x 3 x 2 = 90.

Ko se ugotovi, da je imenovalec, je treba izračunati multiplikator, ki bo drugačen za vsako frakcijo, da je številka, s katero bo potrebno ne samo pomnožiti imenovalec, vendar števec.V tej številki smo ugotovili (skupni večkratnik), deljeno s imenovalec ulomka, ki je potrebna za določitev dodatne dejavnike.

  • 90 deljeno z 15. Dobljena številka "6" bo dejavnik za 3/15.
  • 90 deljeno z 18 Dobljena številka "5", bo dejavnik za 4/18.

Naslednja faza naših rešitev - vsak prinaša v imenovalec ulomka "90".

Kako to storiti, smo rekli.Razmislite, kakor je zapisano v Primeru:

(4 x 5) / (18 x 5) - (3 x 6) / (15 x 6) = 20/90 - 18/90 = 2/90 = 1/45.

Če frakcij z majhnim številom, je mogoče opredeliti skupni imenovalec, kot v primeru, prikazanem na sliki spodaj.

Podobno proizvaja in dodajanje ulomke z različnimi imenovalci.

seštevanje in odštevanje frakcij z celih delov

odvzemanjem frakcij in njihovo Poleg tega moramo temeljito razumeti.Toda, kako narediti odštevanje, če frakcija je celo število del?Again, uporabite nekaj pravil:

  • vse posnetka z celoštevilski del, preveden v narobe.Pri preprostih besed, odstranite celi del.Če želite to narediti, pomnožite število v celotnem imenovalec ulomka, pridobljen z dodajanjem izdelka števcu.To je številka, ki se pridobi po teh ukrepih - števec nepravilna frakcije.Imenovalec ostaja nespremenjen.
  • Če imate frakcije različne imenovalce, da jih je prinesla ista.
  • Opravite dodajanjem ali odvzemanjem z istim imenovalcem.
  • Po prejemu neprimernih frakcij dodeliti del celote.

Obstaja še en način, s katerim lahko izvede seštevanje in odštevanje frakcij z sestavnih delov.Če želite to narediti, je ločeno tožbo z celih kosih, in samostojnih operacije z ulomki, in rezultati so prikazani skupaj.

Primer sestoji iz frakcije, ki imajo enak imenovalec.V primeru, ko so imenovalec različni, ki jih je treba privesti pred enaka, in nato nadaljnje korake, kot je prikazano v primeru.

odštevanje frakcij celo število

Another sort ukrepov s frakcij je v primeru, ko boste morali vzeti del naravnega števila.Na prvi pogled se zdi, kot primer težko rešili.Vendar pa je zelo preprosta.Za rešitev je potrebno prevesti celi del in z imenovalcem, ki je na voljo na delček odbitno franšizo.Naslednja odšteva podobno odštevanje z istim imenovalcem.Na primer, to izgleda takole:

7 - 4/9 = (7 x 9) / 9 - 4/9 = 53/9 - 4/9 = 49/9.

navedene v tem članku odvzemanjem frakcij (razred 6), ki je osnova za bolj zapletene primere, ki so obravnavane v naslednjih razredih.Poznavanje to temo kasneje uporabili za reševanje funkcije, derivate, in tako naprej.Zato je pomembno, da razumemo in razumeti delovanje z frakcij, zgoraj razpravljali.