Snáď najviac základné, jednoduché a zaujímavé číslo v geometrii je trojuholník.V priebehu strednej školy študovať jeho hlavné vlastnosti, ale niekedy poznatky o predmete neúplnej forme.Druhy trojuholníkov najprv stanoviť ich vlastnosti.Ale taký pohľad zostáva zmiešané.Takže teraz máme analyzovať trochu viac o tom.
Druhy trojuholníkov závisí na štúdiá meranie uhlov.Tieto údaje sú ostro-, priamy a tupý.Ak sú všetky uhly neprekračujú hodnotu 90 stupňov, môže toto číslo byť bezpečne nazývaný akútne.Ak je aspoň jeden roh trojuholníka je 90 stupňov, potom máte čo do činenia s obdĺžnikovým poddruhov.V súlade s tým, vo všetkých ostatných prípadoch na základe zváženia geometrického útvaru volal tupý.
Existuje mnoho úloh pre ostrouhlé poddruhov.Charakteristickým rysom je vnútorné umiestnenie priesečníky priamok, mediány a nadmorských výškach.V ostatných prípadoch sa táto podmienka nebola splnená.Určite typ "trojuholníka" číslo je ťažké.To stačí vedieť napríklad, Cosine každého uhla.Ak niektorá hodnota je menšia ako nula, znamená to, že v každom prípade, že trojuholník je tupý.V prípade nulového indexu obrázku má pravé uhly.Všetky pozitívne hodnoty sú zaručene výzvu, ktorá pred vami výhľad ostrouhlý.
nemožno povedať o pravouhlého trojuholníka.To je najviac ideálnou formou, kde všetci rovnaký priesečník mediánu, priamok a nadmorských výškach.Stred kružnice vpísanej a leží na jednom mieste.Ak chcete vyriešiť problémy, ktoré potrebujete vedieť len jednu stranu, ako ste pôvodne nastavíte uhol, ostatné dve strany sú známe.To je údaj, vychádzajúce z iba jeden parameter.Existujú rovnoramenný trojuholníky.Ich hlavným znakom - rovnosť z dvoch strán a uhly na základni.
Niekedy je otázka, či sa jedná o trojuholník s danou stranu.V skutočnosti sa pýtate, či je to vhodné pre popis hlavných typov.Napríklad, ak je súčet dvoch strán je menšia ako tretina, v skutočnosti, ako postava neexistuje vôbec.Ak úloha je požiadaný nájsť cosines z uhlov trojuholníka so stranami 3,5,9, je zrejmý trik.To možno vysvetliť, bez toho, aby zložitých matematických techník.Predpokladajme, že sa chcete dostať z bodu A do bodu B. vzdialenosť v priamej línii je 9 kilometrov.Vy ste však pripomenul, že musíte ísť do sekcie C v obchode.Vzdialenosť od A do C je 3 km, a od C na B - 5. Tak sa ukáže, že, pohybujúce sa v obchode, budete míňať na menej ako jeden kilometer.Ale pretože bod C sa nachádza na priamke AB, potom musíte ísť na veľké vzdialenosti.Tam je spor.To samozrejme, konvenčné vysvetlenie.Matematika nepozná jeden spôsob, ako dokázať, že trojuholníky podliehajú všetky druhy základné identity.Uvádza, že súčet dvoch strán dlhších ako tretí.
Akýkoľvek druh má nasledovné vlastnosti:
1) Súčet všetkých uhlov je 180 stupňov.
2) Tam je vždy orthocenter - priesečník troch výšok.
3) Všetky tri mediánu idúce od vrcholu vnútorné uhly pretínajú na jednom mieste.
4) okolo nejakého trojuholníka môže byť opísaný ako kruh.Môžete tiež zadať do kruhu tak, že má iba tri kontaktné miesta, a nie ísť von.
Teraz zoznámi so základnými vlastnosťami, ktoré majú rôzne druhy trojuholníkov.V budúcnosti, je dôležité pochopiť, čo máte čo do činenia s riešením problému.